On the periodicity of an algorithm for p-adic continued fractions

نویسندگان

چکیده

Abstract In this paper we study the properties of an algorithm, introduced in Browkin (Math Comput 70:1281–1292, 2000), for generating continued fractions field p -adic numbers $$\mathbb Q_p$$ Q p . First all, obtain analogue Galois’ Theorem classical fractions. Then, investigate length preperiod periodic expansions square roots. Finally, prove that there exist infinitely many roots integers have a expansion with period 4, solving open problem left by 2000).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P -adic Continued Fractions

Continued fractions in R have a single definition and algorithms for approximating them are well known. There also exists a well known result which states that √ m, m ∈ Q, always has a periodic continued fraction representation. In Qp, the field of p-adics, however, there are competing and non-equivalent definitions of continued fractions and no single algorithm exists which always produces a p...

متن کامل

P-adic Continued Fractions and a P-adic Behavior of Quasi-periodic Dynamical Systems

In this paper we introduce p-adic continued fractions and its application to quasi-periodic dynamical systems. Investigating the recurrent properties of its orbits, we use the lattice theory, which has direct applications to cryptography. At last we show some numerical calculations of p-adic continued fractions and Gauss reduction algorithm by using the open source software Sage.

متن کامل

S - adic expansions related to continued fractions

We consider S-adic expansions associated with continued fraction algorithms, where an S-adic expansion corresponds to an infinite composition of substitutions. Recall that a substitution is a morphism of the free monoid. We focus in particular on the substitutions associated with regular continued fractions (Sturmian substitutions), and with Arnoux–Rauzy, Brun, and Jacobi–Perron (multidimension...

متن کامل

The Euclidean algorithm and finite continued fractions

Fowler [22] Measure theory of continued fractions: Einsiedler and Ward [19, Chapter 3] and Iosifescu and Kraaikamp [35, Chapter 1]. In harmonic analysis and dynamical systems, we usually care about infinite continued fractions because we usually care about the Lebesgue measure of a set defined by some conditions on the convergents or partial quotients of a continued fraction. For some questions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annali di Matematica Pura ed Applicata

سال: 2023

ISSN: ['1618-1891', '0373-3114']

DOI: https://doi.org/10.1007/s10231-023-01347-6